Autoplay
Autocomplete
Previous Lesson
Complete and Continue
Deep Learning on ARM Processors - From Ground Up™
Introduction
Introduction to Deep Learning (2:59)
Considerations for Deep Learning on Microcontrollers (4:24)
Download Keil uVision 5 (1:16)
Installing Keil uVision 5 (6:23)
Installing Packs (4:19)
Overview of Keil uVision (10:00)
Changing the Compiler (1:53)
Installin ARM Compiler 5
Coding : Setting Up a UART Driver (32:11)
Building Blocks of Neural Networks
Source Code Download
The Single Input Single Output Neural Network (1:05)
Installing Tera Term (2:56)
Coding : The Single Input Single Output Neural Network (13:45)
The Multiple Input Single Output Neural Network (2:39)
Coding : The Multiple Input Single Output Neural Network (16:58)
Coding : Single Input Multiple Output Neural Network (14:31)
The Multiple Input Multiple Output Neural Network (2:49)
Coding : The Multiple Input - Multiple Output Neural Network (21:47)
The Hidden Layer Neural Network (2:37)
Coding : The Hidden Layer Neural Network (18:37)
Comparing and Finding Error (1:52)
Coding : Finding Error (7:50)
Understanding data representation in Machine Learning (1:18)
Understanding the "Learning" in Machine Learning (4:21)
Coding : Brute-force Learning (16:34)
Introduction to Gradient Descent (3:16)
Functional Description of a Biological Neuron (2:08)
Introduction to Neural Network (Part 2)
Case Study : Building a Neural Network to Predict Muscle Gain (9:04)
Coding : Normalizing Datasets (15:52)
Coding : Random Initialization of Weights (15:32)
Understanding Activation Functions (3:41)
Coding : Forward Propagation (40:01)
Basics of Calculus (8:25)
Logistic Regression
Case Study : Building a Neural Network to Detect Cats (6:39)
Deep Neural Networks
Internals of a 2 layer Neural Network (3:01)
Activation Functions (3:41)
Understanding Computational Graphs (8:50)
Updating Parameters Effectively (3:33)
Understanding the Importance of Vectorization (9:05)
Summary of Back-propagation and Forward-propagation (0:39)
Initializing Parameters Effectively (0:38)
Understanding Layers and Units (1:11)
Understanding the Shapes (3:12)
Understanding Broadcasting in Programming (1:18)
Improving Neural Networks with Regularization Techniques
Overfitting and Underfitting (2:49)
Building A Logistic Regression Model
Coding : Installing Python (3:51)
Coding : Installing Python Packages (5:29)
Coding : Setting up our project (5:02)
Coding : Creating a Helper script (8:29)
Coding : Inspecting our dataset (10:31)
Coding : Inspecting the dataset Dimensions (9:34)
Coding : Pre-processing our dataset (9:23)
Coding : Implementing Forward and Backward Propagation (15:59)
Coding : Implementing Gradient Descent (5:48)
Coding : Implementing the Predictor function (5:00)
Coding : Training our Model (27:23)
Coding : Testing our Model (16:59)
Building Deep Neural Networks From Scratch
Coding : Building A Deep Neural Network Library (Version 1) (51:40)
Coding : Implementing a Two-Layer Neural Network (Inspecting the Dataset) (15:18)
Coding : Implementing a Two-Layer Neural Network ( Pre-processing the Dataset) (4:52)
Coding : Implementing a Two-Layer Neural Network ( Building the Model ) (26:00)
Coding : Implementing a Two-Layer Neural Network ( Testing the Model) (37:26)
Coding : Building A Deep Neural Network Library (Version 2) (19:38)
Coding : Implementing a Neural Network with an arbitrary number of Layers (12:28)
Coding : Testing the Multi-Layer Neural Network (7:56)
Convolutional Neural Networks (CNN)
Introduction to Convolution (6:03)
Introduction to 2D Convolution (5:05)
Describing ConvNet Layers (1:05)
Understanding Padding (4:26)
Understanding Striding (1:06)
Convolution Over Volume (2:35)
Single Layer of a Convolutional Neural Network (2:35)
Examining a Complete Convolutional Neural Network (1:48)
Understanding the Pooling Layer (1:03)
Examining a Complete Convolutional Neural Network with a Pooling Layer (1:24)
CubeMX 5 & CubeIDE Primer
Downloading STM32CubeMX and CubeIDE (4:16)
Installing STM32CubeMX and CubeIDE (7:25)
Installing CubeMX Packages (6:07)
Overview of CubeMX 5 (17:17)
CubeMX AI
Setting Up CubeMX.AI (1:38)
Case Study : Deploying the MNIST Handwriting Recognition Model on ARM MCUs
Coding : Setting up our project (28:29)
Coding : Cleaning Up our Project (17:42)
Coding : Implementing the User Interface (31:13)
Coding : Implementing the Touch Sensor (16:28)
Coding : Scaling the Input Image (12:50)
Coding : Deploying our Neural Network (Part 1) (32:14)
Coding : Deploying our Neural Network (Part 2) (23:26)
Coding : Updating our Model (27:41)
Closing
Closing Remarks
Teach online with
Introduction to Gradient Descent
Lesson content locked
If you're already enrolled,
you'll need to login
.
Enroll in Course to Unlock